The FGF Receptor–1 Tyrosine Kinase Domain Regulates Myogenesis but Is Not Sufficient to Stimulate Proliferation
نویسندگان
چکیده
Ligand-stimulated activation of FGF receptors (FGFRs) in skeletal muscle cells represses terminal myogenic differentiation. Skeletal muscle cell lines and subsets of primary cells are dependent on FGFs to repress myogenesis and maintain growth. To understand the intracellular events that transduce these signals, MM14 skeletal muscle cells were transfected with expression vectors encoding chimeric receptors. The chimeras are comprised of the PDGF beta receptor (PDGFbetaR) extracellular domain, the FGFR-1 intracellular domain, and either the PDGFbetaR or FGFR-1 transmembrane domain. The chimeric receptors were autophosphorylated upon PDGF-BB stimulation and are capable of stimulating mitogen-activated protein kinase activity. Activation of the tyrosine kinase domain of either chimera repressed myogenesis, suggesting intracellular responses regulating skeletal muscle differentiation are transduced by activation of the FGFR-1 tyrosine kinase. Unexpectedly, we found that activation of either chimeric receptor failed to stimulate cellular proliferation. Thus, it appears that regulation of skeletal muscle differentiation by FGFs requires only activation of the FGFR tyrosine kinase. In contrast, stimulation of proliferation may require additional, as yet unidentified, signals involving the receptor ectodomain, the FGF ligand, and heparan sulfate either alone, or in combination.
منابع مشابه
Role of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts.
Ligand activation of the fibroblast growth factor receptor (FGFR) represses myogenesis and promotes activation of extracellular signal-regulated kinases 1 and 2 (Erks). The precise mechanism through which the FGFR transmits both of these signals in myoblasts remains unclear. The SH2 domain-containing protein tyrosine phosphatase, SHP-2, has been shown to participate in the regulation of FGFR si...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملاثر نیکل بر ساختار ناحیه کینازی گیرنده فاکتور رشد فیبروبلاستی نوع دو
Background & Aims: Fibroblast growth factor receptor type II (FGFR2b) is the essential factor of cellular signal transduction that regulates important biological processes including cell proliferation and differentiation. The inpairment in the signaling of these receptors is associated with several human pathology. Various factors including toxic metals can change the signaling pathways. This s...
متن کاملFibroblast Growth Factor-2 Stimulation of p42/44 Phosphorylation and IkB Degradation Is Regulated by Heparan Sulfate/Heparin in Rat Mammary Fibroblasts*
Fibroblast growth factor-2 (FGF-2) interacts with a dual receptor system consisting of tyrosine kinase receptors and heparan sulfate proteoglycans (HSPGs). In rat mammary fibroblasts, FGF-2 stimulated DNA synthesis and induced a sustained phosphorylation of p42/ 44 and of its downstream target, p90. Moreover, FGF-2 also stimulated the transient degradation of IkBa and IkBb. PD098059, a specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 142 شماره
صفحات -
تاریخ انتشار 1998